Friday, May 3, 2024

Carbon emission trading

 

Carbon emission trading (also called carbon market, emission trading scheme (ETS) or cap and trade) is a type of emission trading scheme designed for carbon dioxide (CO2) and other greenhouse gases (GHG). It is a form of carbon pricing. Its purpose is to limit climate change by creating a market with limited allowances for emissions.

This can lower competitiveness of fossil fuels and accelerate investments into low carbon sources of energy such as wind power and photovoltaics. Fossil fuels are the main driver for climate change. They account for 89% of all CO2 emissions and 68% of all GHG emissions.

Emissions trading works by setting a quantitative total limit on the emissions produced by all participating emitters. As a result, the price automatically adjusts to this target. This is the main advantage compared to a fixed carbon tax. Under emission trading, a polluter having more emissions than their quota has to purchase the right to emit more. The entity having fewer emissions sells the right to emit carbon to other entities. As a result, the most cost-effective carbon reduction methods would be exploited first. Carbon emissions trading and carbon taxes are a common method for countries in their attempts to meet their pledges under the Paris Agreement.

Carbon emissions trading schemes are in operation in China, the European Union, and other countries. However, they are usually not harmonized with any defined carbon budgets, which are required to maintain global warming below the critical thresholds of 1.5 °C or "well below" 2 °C. The existing schemes only cover a limited scope of emissions. The EU-ETS focuses on industry and large power generation, leaving the introduction of additional schemes for transport and private consumption to the member states. Though units are counted in tonnes of carbon dioxide equivalent, other potent GHGs such as methane (CH4) or nitrous oxide (N2O) from agriculture are usually not part these schemes yet. Apart from that, an oversupply leads to low prices of allowances with almost no effect on fossil fuel combustion. In September 2021, emission trade allowances (ETAs) covered a wide price range from €7/tCO2 in China's new national carbon market[4] to €63/tCO2 in the EU-ETS. Latest models of the social cost of carbon calculate a damage of more than $3000 per ton CO2 as a result of economy feedbacks and falling global GDP growth rates, while policy recommendations range from about $50 to $200.

Carbon emission trade allowance prices in all major emission trading schemes
in Euro per ton of CO2 emitted (from 2008 until 5/2023)

Market mechanisms overview

The economic problem with climate change is that the emitters of greenhouse gases (GHGs) do not face the full cost implications of their actions. These other costs are called external costs. External costs may affect the welfare of others. In the case of climate change, GHG emissions affect the welfare of people now and in the future, as well as affecting the natural environment. The social cost of carbon depends on the future development of emissions. This can be addressed with the dynamic price model of emissions trading.

An emissions trading scheme for greenhouse gas emissions (GHGs) works by establishing property rights for the atmosphere. The atmosphere is a global public good, and GHG emissions are an international externality. The emissions from all sources of GHGs contribute to the overall stock of GHGs in the atmosphere. In the cap-and-trade variant of emissions trading, a limit on access to a resource (the cap) is defined and then allocated among users in the form of permits. Compliance is established by comparing actual emissions with permits surrendered including any permits traded within the cap. The environmental integrity of emissions trading depends on the setting of the cap, not the decision to allow trading.

For emissions trading where greenhouse gases are regulated, one emissions permit is considered equivalent to one tonne of carbon dioxide (CO2) emissions. Other emissions permits are carbon credits, Kyoto units, assigned amount units, and Certified Emission Reduction units (CER). These permits can be sold privately or in the international market at the prevailing market price. These trade and settle internationally, and hence allow permits to be transferred between countries. Each international transfer is validated by the United Nations Framework Convention on Climate Change (UNFCCC). Each transfer of ownership within the European Union is additionally validated by the European Commission.

Emissions trading programmes such as the European Union Emissions Trading System (EU-ETS) complement the country-to-country trading stipulated in the Kyoto Protocol by allowing private trading of permits. Under such programmes - which are generally co-ordinated with the national emissions targets provided within the framework of the Kyoto Protocol - a national or international authority allocates permits to individual companies based on established criteria, with a view to meeting national and/or regional Kyoto targets at the lowest overall economic cost.

Other greenhouse gases can also be traded, but are quoted as standard multiples of carbon dioxide with respect to their global warming potential. These features reduce the quota's financial impact on business, while ensuring that the quotas are met at a national and international level.

Exchanges trading in UNFCCC related carbon credits include the European Climate Exchange, NASDAQ OMX Commodities Europe, PowerNext, Commodity Exchange Bratislava and the European Energy Exchange. The Chicago Climate Exchange participated until 2010. NASDAQ OMX Commodities Europe listed a contract to trade offsets generated by a CDM carbon project called Certified Emission Reductions. Many companies now engage in emissions abatement, offsetting, and sequestration programs to generate credits that can be sold on one of the exchanges. At least one private electronic market has been established in 2008: CantorCO2e. Carbon credits at Commodity Exchange Bratislava are traded at special platform called Carbon place. Various proposals for linking international systems across markets are being investigated. This is being coordinated by the International Carbon Action Partnership (ICAP).

Economics

Efficiency and equity

For the purposes of analysis, it is possible to separate efficiency (achieving a given objective at lowest cost) and equity (fairness). Economists generally agree that to regulate emissions efficiently, all polluters need to face the full costs of their actions (that is, the full marginal social costs of their actions). Regulation of emissions that is applied only to one economic sector or region drastically reduces the efficiency of efforts to reduce global emissions. There is, however, no scientific consensus over how to share the costs and benefits of reducing future climate change (mitigation of climate change), or the costs and benefits of adapting to any future climate change (see also economics of global warming).

Carbon leakage

A domestic carbon emissions trading scheme can only regulate the emissions of the country having the trading scheme. In this case, GHG emissions can "leak" (carbon leakage) to another region or sector with less regulation. Leakages may be positive, where they reduce the effectiveness of domestic emission abatement efforts. Leakages may also be negative, and increase the effectiveness of domestic abatement efforts (negative leakages are sometimes called spillover) (IPCC, 2007). For example, a carbon tax applied only to developed countries might lead to a positive leakage to developing countries. However, a negative leakage might also occur due to technological developments driven by domestic regulation of GHGs. This can help to reduce emissions even in less regulated regions.

Competitiveness risks

One way of addressing carbon leakage is to give sectors vulnerable to international competition free emission permits (Carbon Trust, 2009). This acts as a subsidy for the sector in question. Free allocation of permits was opposed by the Garnaut Climate Change Review as it considered there were no circumstances that justify it and that governments could deal with market failure or claims for compensation more transparently with the revenue from full auctioning of permits. The economically efficient option would, however, be border adjustments (Neuhoff, 2009; Newbery, 2009). Border adjustments work by setting a tariff on imported goods from less regulated countries. A problem with border adjustments is that they might be used as a disguise for trade protectionism. Some types of border adjustment may also not prevent emissions leakage.

Issuing the permits: 'grandfathering' versus auctions

Tradable emissions permits can be issued to firms within an ETS by two main ways: by free allocation of permits to existing emitters or by auction. Allocating permits based on past emissions is called "grandfathering". Grandfathering permits, just like the other option of selling (auctioning) permits, sets a price on emissions. This gives permit-liable polluters an incentive to reduce their emissions. However, grandfathering permits can lead to perverse incentives, e.g., a firm that aimed to cut emissions drastically would then be given fewer permits in the future. Allocation may also slow down technological development towards less polluting technologies. The Garnaut Climate Change Review noted that 'grandfathered' permits are not 'free'. As the permits are scarce they have value and the benefit of that value is acquired in full by the emitter. The cost is imposed elsewhere in the economy, typically on consumers who cannot pass on the costs. However, profit-maximising firms receiving free permits will raise prices to customers because of the new, non-zero cost of emissions.

A second method of "grandfathering" is to base allocations on current production of economic goods, rather than historical emissions. Under this method of allocation, government will set a benchmark level of emissions for each good deemed to be sufficiently trade exposed and allocate firms units based on their production of this good. However, allocating permits in proportion to output implicitly subsidises production. The Garnaut Report noted that any method for free permit allocation will have the disadvantages of high complexity, high transaction costs, value-based judgements, and the use of arbitrary emissions baselines.

On the other hand, auctioning permits provides the government with revenues. These revenues could be used to fund low-carbon investment, and also fund cuts in distortionary taxes. Auctioning permits can therefore be more efficient and equitable than allocating permits. Ross Garnaut stated that full auctioning will provide greater transparency and accountability and lower implementation and transaction costs as governments retain control over the permit revenue.

Recycling of revenue from permit auctions could offset a significant proportion of the economy-wide social costs of a cap and trade scheme. As well as reducing tax distortions, Kerr and Cramton (1998) note that auctions of units are more flexible in distributing costs, they provide more incentives for innovation, and they lessen the political arguments over the allocation of economic rents.

Lobbying for free allocation

According to Hepburn, "it should be expected that industry will lobby furiously against any auctioning". Hepburn et al. (2006) state that it is an empirical fact that while businesses tend to oppose auctioning of emissions permits, economists almost uniformly recommend auctioning permits. Garnaut notes that the complexity of free allocation, and the large amounts of money involved, encourage non-productive rent-seeking behaviour and lobbying of governments, activities that dissipate economic value.

Distribution of allowances

Emission allowances may be given away for free or auctioned. In the first case, the government receives no carbon revenue and in the second it receives (on average) the full value of the permits. In either case, permits will be equally scarce and just as valuable to market participants. Since the private market (for trading permits) determines the final price of permits (at the time they must be used to cover emissions), the price will be the same in either case (free or auctioned). This is generally understood.

A second point about free permits (usually "grandfathered", i.e. given out in proportion to past emissions) has often been misunderstood. Companies that receive free permits, treat them as if they had paid full price for them. This is because using carbon in production has the same cost under both arrangements. With auctioned permits, the cost is obvious. With free permits, the cost is the cost of not selling the permit at full value-this is termed an "opportunity cost". Since the cost of emissions is generally a marginal cost (increasing with output), the cost is passed on by raising the cost of output (e.g. raising the cost of gasoline or electricity).

Windfall profits

A company that receives permits for free will pass on its opportunity cost in the form of higher product prices. Hence, if it sells the same amount of output as before that cap, with no change in production technology, the full value (at the market price) of permits received for free becomes windfall profits. However, since the cap reduces output and often causes the company to incur costs to increase efficiency, windfall profits will be less than the full value of its free permits.

Generally speaking, if permits are allocated to emitters for free, they will profit from them. But if they must pay full price, or if carbon is taxed, their profits will be reduced. If the carbon price exactly equals the true social cost of carbon, then long-run profit reduction will simply reflect the consequences of paying this new cost. If having to pay this cost is unexpected, then there will likely be a one-time loss that is due to the change in regulations and not simply due to paying the real cost of carbon. However, if there is advanced notice of this change, or if the carbon price is introduced gradually, this one-time regulatory cost will be minimized. There has now been enough advance notice of carbon pricing that this effect should be negligible on average.

Market trends

Carbon emissions trading increased rapidly in 2021 with the start of the Chinese national carbon trading scheme.[39] The increasing costs of permits on the EU ETS have had the effect of increasing costs of coal power.

A 2019 study by the American Council for an Energy Efficient Economy (ACEEE) finds that efforts to put a price on greenhouse gas emissions are growing in North America. "In addition to carbon taxes in effect in Alberta, British Columbia and Boulder, Colorado, cap and trade programs are in effect in California, Quebec, Nova Scotia and the nine northeastern states that form the Regional Greenhouse gas Initiative (RGGI). Several other states and provinces are currently considering putting a price on emissions."

Business reaction

The International Air Transport Association, whose 230 member airlines comprise 93% of all international traffic, position is that trading should be based on "benchmarking", setting emissions levels based on industry averages, rather than "grandfathering", which would use individual companies' previous emissions levels to set their future permit allowances. They argue grandfathering "would penalise airlines that took early action to modernise their fleets, while a benchmarking approach, if designed properly, would reward more efficient operations".

In 2021 shipowners said they are against being included in the EU ETS.

Criticisms

Emissions trading has been criticized for a variety of reasons. For example, in the popular science magazine New Scientist, Lohmann (2006) argued that trading pollution allowances should be avoided as a climate stabilization policy for several reasons. First, climate change requires more radical changes than previous pollution trading schemes such as the US SO2 market. It requires reorganizing society and technology to "leave most remaining fossil fuels safely underground". Carbon trading schemes have tended to reward the heaviest polluters with 'windfall profits' when they are granted enough carbon credits to match historic production. Expensive long-term structural changes will not be made if there are cheaper sources of carbon credits which are often available from less developed countries, where they may be generated by local polluters at the expense of local communities.

Critics of carbon trading, such as Carbon Trade Watch, argue that it places disproportionate emphasis on individual lifestyles and carbon footprints, distracting attention from the wider, systemic changes and collective political action that needs to be taken to tackle climate change. Groups such as the Corner House have argued that the market will choose the easiest means to save a given quantity of carbon in the short term, which may be different from the pathway required to obtain sustained and sizable reductions over a longer period, and so a market-led approach is likely to reinforce technological lock-in. For instance, small cuts may often be achieved cheaply through investment in making a technology more efficient, where larger cuts would require scrapping the technology and using a different one. They also argue that emissions trading is undermining alternative approaches to pollution control with which it does not combine well, and so the overall effect it is having is to actually stall significant change to less polluting technologies. In September 2010, campaigning group FERN released "Trading Carbon: How it works and why it is controversial" which compiles many of the arguments against carbon trading.

The Financial Times published an article about cap-and-trade systems which argued that "Carbon markets create a muddle" and "...leave much room for unverifiable manipulation". Lohmann (2009) pointed out that emissions trading schemes create new uncertainties and risks, which can be commodified by means of derivatives, thereby creating a new speculative market.

In China some companies started artificial production of greenhouse gases with sole purpose of their recycling and gaining carbon credits. Similar practices happened in India. Earned credit were then sold to companies in US and Europe.

Chicago Climate Justice activists protesting cap and trade legislation
in front of Chicago Climate Exchange building in Chicago Loop

Proposals for alternative schemes to avoid the problems of cap-and-trade schemes include Cap and Share,[clarification needed] which was considered by the Irish Parliament in 2008, and the Sky Trust schemes. These schemes stated that cap-and-trade schemes inherently impact the poor and those in rural areas, who have less choice in energy consumption options.

Carbon trading has been criticised as a form of colonialism, in which rich countries maintain their levels of consumption while getting credit for carbon savings in inefficient industrial projects. Nations that have fewer financial resources may find that they cannot afford the permits necessary for developing an industrial infrastructure, thus inhibiting these countries economic development.

The Kyoto Protocol's Clean Development Mechanism has been criticised for not promoting enough sustainable development.

Another criticism is the claimed possibility of non-existent emission reductions being recorded under the Kyoto Protocol due to the surplus of allowances that some countries possess. For example, Russia had a surplus of allowances due to its economic collapse following the end of the Soviet Union. Other countries could have bought these allowances from Russia, but this would not have reduced emissions. Rather, it would have been simply be a redistribution of emissions allowances. In practice, Kyoto Parties have as yet chosen not to buy these surplus allowances.

Flexibility, and thus complexity, inherent in cap and trade schemes has resulted in a great deal of policy uncertainty surrounding these schemes. Such uncertainty has beset such schemes in Australia, Canada, China, the EU, India, Japan, New Zealand, and the US. As a result of this uncertainty, organizations have little incentive to innovate and comply, resulting in an ongoing battle of stakeholder contestation for the past two decades.

Lohmann (2006b) supported conventional regulation, green taxes, and energy policies that are "justice-based" and "community-driven". According to Carbon Trade Watch (2009), carbon trading has had a "disastrous track record". The effectiveness of the EU ETS was criticized, and it was argued that the CDM had routinely favoured "environmentally ineffective and socially unjust projects".

Annie Leonard's 2009 documentary The Story of Cap and Trade criticized carbon emissions trading for the free permits to major polluters giving them unjust advantages, cheating in connection with carbon offsets, and as a distraction from the search for other solutions.

Offsets

Forest campaigner Jutta Kill (2006) of European environmental group FERN argued that offsets for emission reductions were not substitute for actual cuts in emissions. Kill stated that "[carbon] in trees is temporary: Trees can easily release carbon into the atmosphere through fire, disease, climatic changes, natural decay and timber harvesting."

Permit supply level

Regulatory agencies run the risk of issuing too many emission credits, which can result in a very low price on emission permits. This reduces the incentive that permit-liable firms have to cut back their emissions. On the other hand, issuing too few permits can result in an excessively high permit price. This is an argument for a hybrid instrument having a price-floor, i.e., a minimum permit price, and a price-ceiling, i.e., a limit on the permit price. However, a price-ceiling (safety value) removes the certainty of a particular quantity limit of emissions.

Permit allocation versus auctioning

If polluters receive emission permits for free ("grandfathering"), this may be a reason for them not to cut their emissions because if they do they will receive fewer permits in the future.

This perverse incentive can be alleviated if permits are auctioned, i.e., sold to polluters, rather than giving them the permits for free. Auctioning is a method for distributing emission allowances in a cap-and-trade system whereby allowances are sold to the highest bidder. Revenues from auctioning go to the government and can be used for development of sustainable technology or to cut distortionary taxes, thus improving the efficiency of the overall cap policy.

On the other hand, allocating permits can be used as a measure to protect domestic firms who are internationally exposed to competition. This happens when domestic firms compete against other firms that are not subject to the same regulation. This argument in favor of allocation of permits has been used in the EU ETS, where industries that have been judged to be internationally exposed, e.g., cement and steel production, have been given permits for free).

Structuring issues

Corporate and governmental carbon emission trading schemes have been modified in ways that have been attributed to permitting money laundering to take place. The principal point here is that financial system innovations (outside banking) open up the possibility for unregulated (non-banking) transactions to take place in relativity unsupervised markets.

Carbon leakage

The current state of carbon emissions trading shows that roughly 22% of global greenhouse emissions are covered by 64 carbon taxes and emission trading systems as of 2021. This means that there are still several member states that have not ratified the Kyoto Protocol. This is a cause of concern for energy intensive industries that are covered by such instruments that claim that there is a loss of competitiveness. Such corporations are thereby forced to take strategic production decisions that contribute to the issue of carbon leakage. To mitigate carbon leakage and its effects on the environment, policymakers need to harmonize international climate policies and provide incentives to prevent companies from relocating production to regions with more lenient environmental regulations. A level playing field for businesses across the globe is essential for maintaining competitiveness while effectively combating climate change.

History

The process began in Rio de Janeiro in 1992, when 160 countries agreed the UN Framework Convention on Climate Change (UNFCCC). The necessary detail was left to be settled by the UN Conference of Parties (COP).

In 1997, the Kyoto Protocol was the first major agreement to reduce greenhouse gases. 38 developed countries (Annex 1 countries) committed themselves to targets and timetables. The resulting inflexible limitations on GHG growth could entail substantial costs if countries have to solely rely on their own domestic measures.

The following is the estimated size of the worldwide carbon market according to the World Bank :

Volume (millions metric tonnes, MtCO2)

  • 2005: 718 (330 in Main Allowances Markets & 388 in Project based transactions)
  • 2006: 1,745 (1,134 in Main Allowances Markets & 611 in Project based transactions)
  • 2007: 2,983 (2,109 in Main Allowances Markets & 874 in Project based transactions)





No comments: